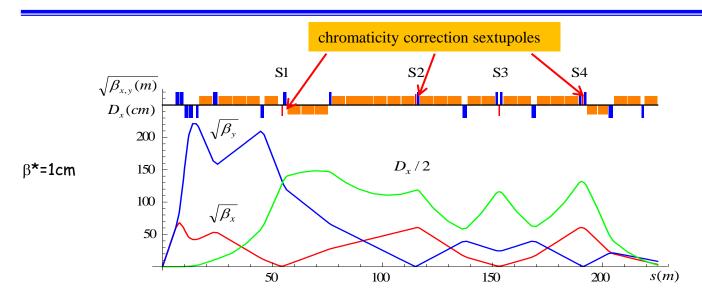


Overview of Muon Collider Rings, MDI and Background Mitigation

Y. Alexahin (FNAL APC)

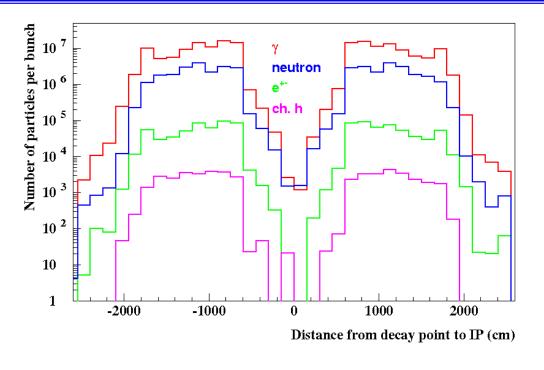
Design Goals


Lattice design goals:

- High Luminosity (small β^* , circumference, momentum compaction)
- Acceptable detector backgrounds (tight apertures, dipole component in FF quads, halo suppression)
- Manageable heat loads in magnets (W absorbers and masks, shorter magnets, again dipole component in quads)
- β^* variation in wide range (w/o breaking dispersion closure)
- Limited β_{max} to reduce required apertures and sensitivity to errors.
- Higgs Factory: small collision energy spread $\sigma_E/E \le 4.10^{-5}$
- High Energy MC ($E_{com} \ge 3 \text{TeV}$): safe levels of v-induced radiation (no long straights, combined-function magnets to spread v's)

Magnet design goals:

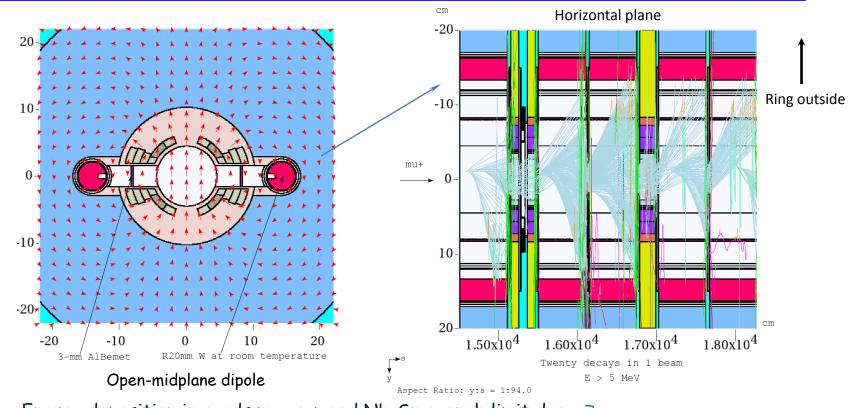
- High nominal fields in the required (large) aperture
- Sufficient operation margin to work at high dynamic heat load
- Accelerator beam quality in the beam area
- Not just theoretical feasibility, but also technological realizability (stress management, cooling, quench protection, protection from radiation, production process!)


E_{com}=1.5 TeV Collider Lattice

This was chronologically the first successful design (November 2009) for which an (almost) full cycle of studies was completed:

- 3-sextupole chromaticity correction scheme developed \to stable momentum range \pm 1.2%, DA > 4σ w/o errors
- Magnet design for entire ring (10T pole tip field assumed)
- Heat deposition and detector background simulations \rightarrow important conclusions (see next slides), the background level achieved \sim that at LHC
- Study of systematic field errors (fringe fields and multipoles) and attempt to correct them (finished with DA \approx 3 σ due to open-midplane magnet multipoles)
- Study of beam-beam effects (including strong-strong)

Background Source Tagging for 1.5 TeV MC

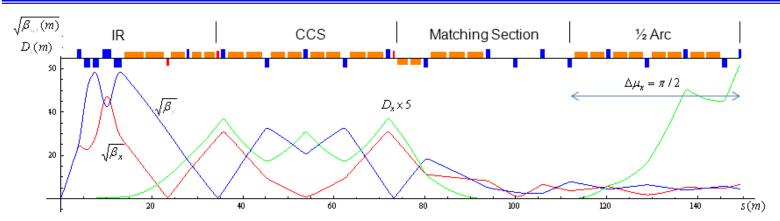

For BH muons the origin within ±100m

All background species (except BH muons) originate from region ± 18 m w/o strong dipole field (though there is 2T in defocusing quads).

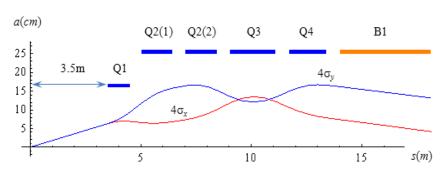
This result settles the discussion if a dipole field in the detector vicinity is a good or a bad thing - it is needed!

The subsequent designs for Higgs Factory and 3 TeV collider employed quadruplet Final Focus with 2T dipole field in the 2nd from IP quad (see support slides for detail)

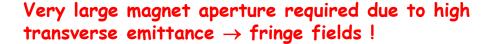
Showers from μ + Decays in CC Section

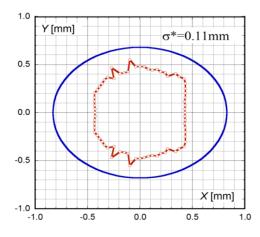


- Energy deposition in quads may exceed Nb₃Sn quench limit due to "punch through" the masks from midplane gaps in dipoles
- Decay electrons linger at field-reversal radial position in dipoles and eventually hit vertically the cold mass, not the rods
- Electrons are spread by quadrupoles \rightarrow synchrotron γ 's hit elements on the outside of dipoles

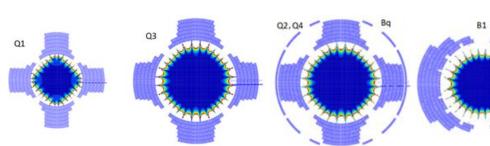

Open-midplane dipoles do not work

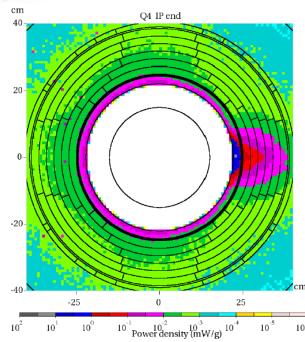
Combined-function magnets can be helpful


Higgs Factory Lattice

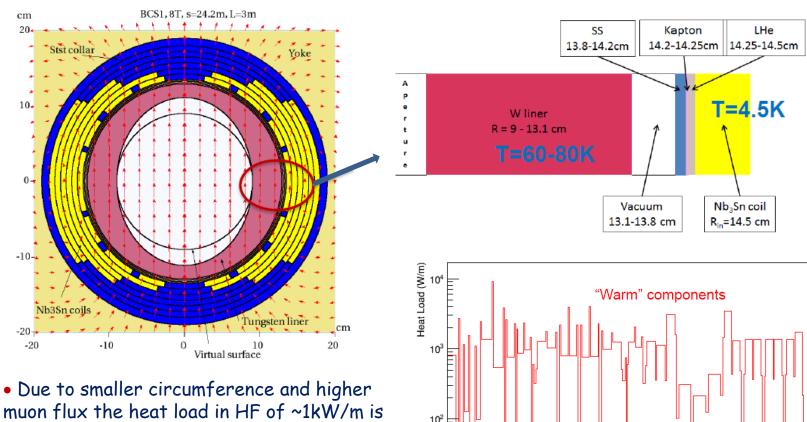


Higgs Factory lattice and optics functions for β *=2.5cm in a half-ring starting from IP


IR quad cold mass inner radii and 4σ beam envelopes for β *=2.5cm. Q2 and Q4 have 2T dipole component (need higher?)


The dynamic aperture (fringe fields + multipoles + correction on) and projection of FF quad aperture (solid ellipse).

Large Aperture Magnet Design

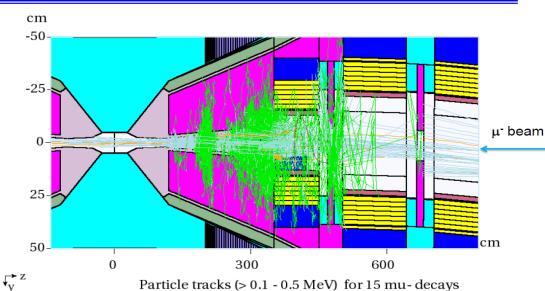

	Q1	Q2	Q3	Q4
aperture (cm)	32	50	50	50
gradient (T/m)	74	-36	44	-25
dipole field (T)	0	2	0	2
length (m)	1.0	1.4	2.05	1.7
B _{coil} (T)	16.4	17.2	16.9	(17.2)
Margin @ 4.5°K	0.78	0.62	0.70	(0.62)

- 6-layer, shell-type coil design achieves the design goals with sufficient margin
- Good field quality region (deep blue)
 ~0.7 of the aperture determines the DA

 \bullet Masks between the quads at 4σ and inner absorbers reduced heat loads from 100-150mW/g to <1.5mW/g

Dynamic Heat Load

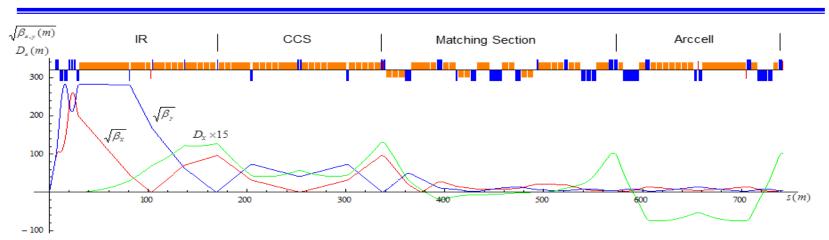
- muon flux the heat load in HF of ~1kW/m is twice higher than in high-energy MC
- With W masks optimized individually for each magnet interconnect region and with elaborate inner absorbers (top) the cold mass heat load was reduced to safe value ~10W/m

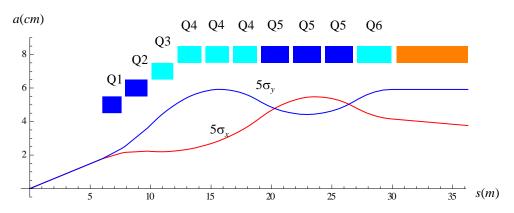

S (m)

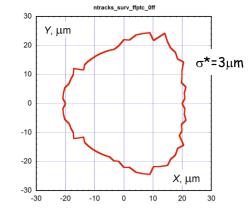
Cold mass

Higgs Factory Detector Backgrounds

Expect poorer performance compared to 1.5 TeV MC:

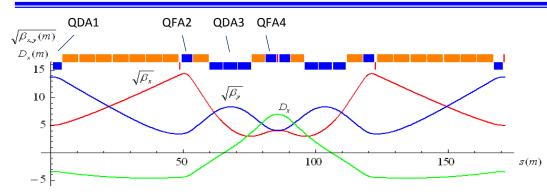

- geometrically larger aperture,
- almost twice shorter, substantially thinner cone,
- 2.5 times shorter trap and
- 3.5 longer tip-to-tip open region ($\pm 2\sigma_z$ plus no extra shadowing for collision products)


		' y	Particle tracks
Particle	1.5-TeV MC 10deg	125-GeV HF V2 (MAP13 06/13)	125-GeV HF V7x2s4 (Jan. 2014)
Photon N E	1.8×10 ⁸ 160 <e>=0.9 MeV</e>	3.2×10 ⁹ 12000	2.8×10 ⁸ 2200 _{<e>=8 MeV</e>}
Electron N E	1.0×10 ⁶ 5.8 _{<e>=6 MeV</e>}	1.2×10 ⁸	2.0×10 ⁶ 32 _{<e>=16 MeV</e>}
Neutron N E	4.1×10 ⁷ 170	1.7×10 ⁸ 300	5.2×10 ⁷ 86
Ch. Hadron N	4.8×10 ⁴ 12	1.0×10 ⁵ 26	1.0×10 ⁴ 2.3
Muon N	8.0×10 ³ 184 <e>=23 GeV</e>		2.8×10 ³ 8.2 _{<e>=3 GeV</e>}


This number is challenged by Tom Markiewicz. Is the same shielding geometry, energy cuts etc. used?

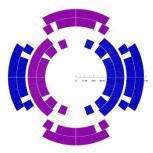
E_{com}=3TeV Collider Lattice

Optics functions from IP to the end of the first arc cell (6 such cells / arc) for β *=5mm

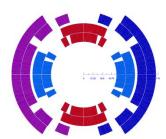

5 sigma beam sizes and magnet inner radii.

Q3, Q4 and Q6 have 2T dipole component.

 $B_{\text{pole tip}}$ = 12T for shown apertures, can be reduced to 10T - we do not need 5σ for the beam scraped at 3σ .


The dynamic aperture w/o field errors $\approx 6\sigma$. The stable momentum range $\pm 0.7\%$

Combined Function Magnets for the Arcs



Motivation:

- Spread decay v's
- Sweep away decay electrons before they depart from median plane - allows for azimuthally tapered absorber

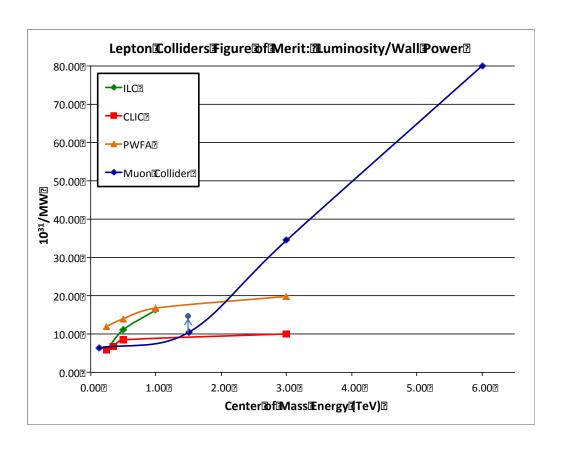
Dipole/Quad

Quad/Dipole

Dovernator (A.EV.)	D/Q	Q	/D
Parameter (4.5K)	QDA1/3	QDA1/3	QFA2/4
Maximum field in coil (T)	16.8/16.7*	16.5/17.5	
Maximum field or gradient in aperture (T or T/m)	9.3/76.7	12.0/72.5	
Operating field or gradient (T or T/m)	9.0/35.0	9.0/35.0	8.0/85.0
Fraction of SSL at the operating field	0.75/0.61*	0.70/0.64	0.75/0.86
Inductance L _{self} (mH/m)	16.0/20.6*	44.2/6.9	
Stored energy E at the operating field (MJ/m)	1.5/0.5	2.9/0.1	2.3/0.6
Horizontal Lorentz force F _x at the operating field (MN/m)	7.7/-0.1#	7.2/2.2	6.1/5.5
Vertical Lorentz force F _v at the operating field (MN/m)	-4.5/-1.6	-4.0/-0.3	-4.5/-1.5
Length (m)	3.34/5.0	3.34/5.0	1.8/2.8
Aperture (mm)	150	150	150

^{*} the first value is for dipole coils, the second one is for quadrupole coils;

- Quad/Dipole design appears superior
- Preliminary analysis shows heat deposition in coils < 1.5 mW/g with only 2cm thick absorbers. However a thicker absorber can be required to keep the heat load below 10W/m


[#] totals per quadrant in dipole and per octant in quadrupole.

Design Parameters

Muon Collider parameters					
Collision energy, TeV	0.126	1.5	3.0	6.0*	
Repetition rate, Hz	30	15	12	6	
Average luminosity / IP, 10 ³⁴ /cm ² /s	0.0025	1.25	4.6	13	
Number of IPs	1	2	2	2	
Circumference, km	0.3	2.5	4.34	6	
β*, cm	2.5	1	0.5	0.25	
Momentum compaction factor	0.08	-1.3·10 ⁻⁵	-0.9·10 ⁻⁵	-0.5·10 ⁻⁵	
Normalized emittance, π ·mm·mrad	300	25	25	25	
Momentum spread, %	0.003	0.1	0.1	0.1	
Bunch length, cm	5.6	1	0.5	0.25	
Number of muons / bunch, 10 ¹²	2	2	2	2	
Number of bunches / beam	1	1	1	1	
Beam-beam parameter / IP	0.007	0.09	0.09	0.09	
RF frequency, GHz	0.2	1.3	1.3	1.3	
RF voltage, MV	0.1	12	85	530	
Proton driver power (MW)	4	4	4	2	

First attempt made by M.-H. Wang (SLAC), requires stronger magnets to keep L~E^2

Luminosity / Wall Power Comparison

1.5 TeV design used doublet FF, with quadruplet FF β^* can be maid smaller and luminosity ~50% higher

Design Status

E _{com} (TeV)	Lattice design	Magnet design	Heat deposit.	MDI design	Magnet error corr.	Beam-beam & coherent
0.126	✓	✓	✓	✓	✓	✓
1.5	✓	✓	✓	✓	✓	✓
3.0	✓	✓	✓	-	-	-
6.0	-	-	_	-	_	-

If work on the Muon Collider will be resumed:

- Finish the 3TeV MC design (improve β^* -tuning section, design MDI, address beam collimation/halo extraction problem)
- Study tolerances on random field errors and misalignments of general importance for understanding the real constraints on beta-functions, momentum compaction factor etc.
- Try larger dipole component in IR quads to reduce backgrounds
- Develop cryostat concept integrated with W absorbers and masks
- Start 6TeV lattice with stronger HTS + LTS magnets (?)
- Re-design 1.5 TeV MC with quadruplet FF if there is physics within its reach

Very High-Energy MC Prospects

Higher magnetic fields (and gradients) are the key to high luminosity:

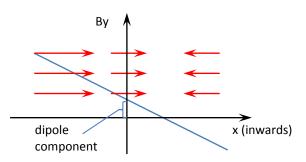
- Circumference
- β*

From A. Zlobin's talk at the previous MAP meeting:

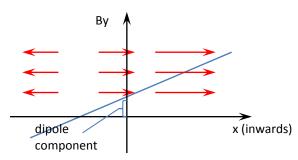
Higher field magnets – *outside of the MAP scope and resources => GARD*

15 T Nb₃Sn magnets with coil ID~20(40) cm, B_{des}~18 T – new class of Nb₃Sn accelerator magnets
20 T HTS/LTS magnets (10 T HTS insert) with ~20 cm bore,
B_{des}>25 T – new magnet technology
significant R&D effort is needed!!!

But we need <u>now</u> an educated guess of what will be feasible within 20 years

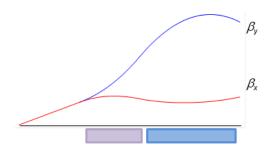

Achievements

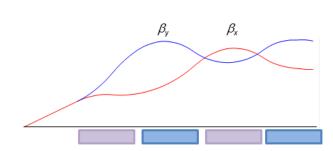
Concepts developed in the course of work on HF, 1.5TeV and 3TeV MC:


- 3-sextupole chromaticity correction scheme
- Quadruplet Final Focus (not implemented in the chronologically first 1.5TeV design)
- New Flexible Momentum Compaction arccell design (High Energy MC)
- β^* -tuning section with a chicane (for $E_{com} \ge 3 \text{TeV}$)
- Dipole component in IR quad is proven to reduce backgrounds
- Nozzle, cone, masks optimization Backgrounds in 1.5TeV MC (and in HF?) on par with LHC
- Classical cos-theta dipole with inner absorbers found superior to open-midplane
- Magnet studies for 0.125, 1.5 and 3 TeV MC are almost complete, apertures as large as 0.5m do not pose a problem
- Optimum configuration for combine-function magnets a nested
 Quadrupole/Dipole magnet found

Support slide - Why Quadruplet Final Focus?

focusing quad + dipole


defocusing quad + dipole



- Dipole component in a defocusing quad is more efficient for cleaning purposes it is beneficial to have the 2nd from IP quad defocusing
- The last quad of the FF "telescope" also must be defocusing to limit the dispersion "invariant" generated by the subsequent dipole (not shown)

$$J_{x} = \frac{D_{x}^{2} + (\beta_{x}D_{x}' + \alpha_{x}D_{x})^{2}}{\beta_{x}} \approx \beta_{x}\phi^{2}$$

- both requirement are met with either doublet or quadrupole FF:

